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C : Cr + iC i =/

Ci = amplification (or damping) factor

Cr = wave propagation speed of disturbance

d,D = diameter

g = acceleration due to gravity

h = channel width

i =1
1,L = length

im = flow exponent

P = pressure (force per unit area)

r,R = radius

R,Re = (UL/v or Ud/v or Ud/v = Reynolds number

Rcrit = critical Reynolds number

Rtrans = transition Reynolds numbers

A R = Rtrans - Rcrit

U= mean velocity (in pipe)

Um = Uoxm = velocity in potential flow

U = maximum velocity

U. = free-stream velocity

u,v,w = veloctiy components

u',v',w' = velocity components of disturbance

vi



u = temporal mean velocity

U(y) = boundary-layer velocity distribution

x,y,z = cartesian coordinates

x = streamwise coordinate

y,z = coordinates normal to flow direction

= wave-number of disturbance

B = Or + i i

Bi = amplification (or damping) factor

Or = circular frequency of disturbance

8 boundary-layer thickness

SI, = displacement thickness

82, e= momentum thickness

= y/6 = non-dimensional displacement

= momentum thickness Pohlhausen parameter

A = boundary-layer thickness Pohlhausen parameter

S= viscosity

V = kinematic viscosity

= fluid density

0(y) = amplitude of stream function of disturbance
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An analytical study is presented regarding the

determination of a pressure gradient dependent criterion for

flow transition from laminar to turbulent flow. The results

obtained were derived from two parallel approaches to 'ow

stability; one of wave-dependent stability and the oth of

vorticity-dependent stability. In both cases, one a

variable transition Reynolds number dependent upor. -.1e

ambient pressure gradient and the other one of a constant

transition Reynolds number based on the boundary-layer

displacement thickness, the prediction results were either

as good or better than those from available prediction

methods. In addition these two criteria were used to

predict transition locations on a NACA 0018 airfoil, again

with favorable results.
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The development of an understanding of the mechanism or

mechanisms responsible for the transition from laminar to

turbulent flow is one of the most unknown areas in the field

of fluid mechanics today. Rather than being dependent upon

one flow condition or parameter the actions of flow

transition is seen to be a function of many different flow

factors that are not necessarily independent of one another.

Some of these are: the roughness of the flow passage walls;

heating or cooling of the passage walls; obs.ructions in the

flow field; blowing or suction at the passage walls; mass

transfer or chemical reaction with the passage walls;

pressure pulses (noise) in the flow; deformable wall

geometry; and, ambient pressure gradients in the flow

(Ref. 1). One of the major problems in either an

experimental or analytic treatment of this subject is the

difficulty in isolating the effect of the variation of one

flow parameter while keeping the others constant. This

problem is due to both the technical difficulties

encountered in monitoring and controlling the other

parameters and to the functional interdependence of these

parameters which results in large data scatters in similar

investigations and inhibits comprehensive studies of flow

transition. These complications have resulted in



significant obstacles in the theoretical study of flow

transition and have limited the experimental data to a

small, specialized body. The many parameters used to

characterize the flow take a wide variety of functional

forms which also tend to defy correlation into a

comprehensive picture.

An additional barrier to fluid transition study is that

not only are the factors affecting transition variable in

their effect upon transition and related to each other in a

complicated manner, but transition, and subsequently

transition data, has not been uniquely defined. Although

there exist universally accepted concepts for laminar flow

and turbulent flow, the transition of a flow has been

variously reported in terms of: the of transition

(the appearance of turbulent spots); the e of transition

(the flow consisting of a variably-defined level of

turbulence); or, a region of transition that lies between

fully-laminar flow and fully-turbulent flow and contains the

two previously mentioned boundaries. Finally, most

theoretical studies of this field, both analytic and

numerical, do not deal with transition at all but with flow

4,,, ±j.ljj where an unstable flow is defined as a flow

which contains Tollmein-Schlichting waves of such

frequencies and wavelengths that their amplitudes will tend

to magnify as a function of time and will subsequently cause

the flow transition to turbulence.

io2
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With the above limitations taken into consideration,
'1

this study focused on only the effect of an ambient pressure

gradient in the flow on the mechanism of transition. An

empirical prediction method based on a transition Reynolds

number, based on fluid boundary-layer momentum thickness,

was developed by Kays and Crawford (Ref. 2) that yielded a

single value of 360 for a flow regardless of the history of

the flow boundary layer. Hermann Schlichting (Ref. 1),

conversely, reported a theoretical dependence of fluid

instability on the presence of a pressure gradient where he

used a critical Reynolds number based on the fluid boundary-

0 layer displacement thickness. This study sought to develop

a prediction method that blended these two ideas into a

single criterion (i.e., encompass both the momentum

interaction of the boundary layer and the influence of the

presence of a flow pressure gradient).



.1

The origins of flow stability theory are derived from

an attempt by fluid mechanicists to explain flow transitions

from first principles. This theory is based directly upon

the incompressible, three-dimensional Navier-Stokes

equations with the assumption of one-dimensional

perturbation velocities. With the use of perturbation

theory, the assumption of small amplitude disturbances, and

the retention of only the linear perturbation terms, the

Navier-Stokes equations are transformed into what is

commonly known as the Orr-Sommerfeld equation. A full

derivation of the Orr-Sommerfeld equation, based in part

upon the treatment of Hunt (Ref. 3) and in part upon that of

Schlichting (Ref. 1) is given in Appendix A. The usual form

of the equation is:

(U-c)(0" - Q20) _ un =- (01 -22 + a40 ) ()
aR

where

-- boundary layer velocity profile

c = complex wave speed

0 wave amplitude

.. a = wave number

4
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R Reynolds number (usually based upon edge
velocity and displacement thickness)

and all variables are nondimensional with the primes

denoting derivatives with respect to the coordinate normal

to the mean flow direction.

The Orr-Sommerfeld equation represents a complex,

fourth-order homogeneous ordinary differential equation in

0, yet with both u and 0 being functions of the normal

coordinate and due to the fact that (C, a , R) represent a

related family of parameters, there is no closed-form

solution to this equation. Thus, the main tool of flow

stability has no known exact solution. Common approximate

analytic solutions use asymptotic approximations that

involve recursive Hankel functions of order 1/3, such as

Lin's method (Ref. 4). Existing computer-aided numerical

solutions as a rule either use eigen-value "shooting

methods" (Ref 5) or expand the equation in terms of

orthogonal polynomials, such as Chebyshev polynomials

(Ref. 6), and use successive-guess and recursive

relationships among the polynomials to achieve approximate

solutions to the Orr-Sommerfield equation.

The usual method of presenting these stability results

is in the form of a neutral stability curve (see Fig. 1).

In this plot, the curve represents the variation of wave

number as a function of Reynolds number. The points on the

curve represent Reynolds numbers and wavenumber combinations

-i.: 5
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which do not tend to be amplified or dampened temporally for

the associated waves. The region outside of the curve

represents those combinations of wavenumber and Reynolds

number for which disturbances tend to damp-out and the

region inside the curve represents those combinations for

which disturbances tend to be amplified and for which the

flow is said to be unstable. The Reynolds number below

which no value of wavenumber will yield unstable flow is

said to be the c Reyn numjr and is the minimum

value of the Reynolds number on the curve. Due to the

approximate nature of the existing solutions there is a

V considerable variation of determined Rcrit values as can be

seen in Fig. 2 which is from a compilation by van Ingen

(Ref. 7) where Rcrit varies from 321 to 680. With this

large variation in mind, stability theory results are
-4!

treated warily and are considered as approximate only.

TrniinVersusIntbly

Stability theory, though it is derived from first

principles through the Navier-Stokes equations, is in fact

quite limited when true transition is considered. Besides

the approximate nature of the Orr-Sommerfeld equation

solution which does not yield unique values for any one flow

situation treated by stability theory, most common flows

tend to violate one or more of the basic assumptions used to

derive the theory. Some of these violations are: velocity

components nonparallel to the mean flow direction that tend

Lde7
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to make the flow unstable at lower Reynolds numbers;

S -. nonlinearity of the perturbation velocity components that

tend to invalidate the linearized theory used to derive the

Orr-Sommerfeld equation; dependence of the mean flow

velocity on its streamwise coordinate that is neglected in

stability theory derivations and adds another degree of

complexity to the flow situation; and, large amplitude

disturbances that are observed just prior to transition that

are considered infinitesmal in magnitude for stability

theory. Even with these severe limitations of stability

theory, Rcrit is always less than Rtrans for a given flow

case and thus provides a conservative criterion for

transition. Furthermore, the behavior of Rcrit from one

flow case to another tends to follow the same trends that

Rtrans does, yielding a characteristic, if not exact,

criterion for flow transition.

The fundamental basis of flow stability theory is that
flow instability, and thus flow transition, is dependent

upon the behavior of the amplification or dampening of the

Tollmein-Schlichting waves present in the flow. A mechanism

that does not depend on this type of wave action yet could

plausibly play an equal if not greater role in flow

transition would be a welcome addition to transition theory

if it could be seen to have a firm foundation in first

principles and also not to have many of the limitations of

wave-theory. Such an approach which was based on "vorticity

stability" was investigated in this study with favorable

results.

9
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The determination of a pressure gradient criterion for
flow stability, and by allusion transition, required the

knowledge of the values of A(Pohlhausen velocity profile

shape parameter), a (boundary layer thickness), 61

(displacement thickness),and 8 2 (momentum thickness) for

each flow case in addition to the value of Rerit. This was

due to the fact that various sources based their cited

values of Rcrit or Rtrans on either 61 or 62, or in the

case of internal flow, Dh (hydraulic diameter) which could

be related physically to for fully-developed internal

flows.0
Pressure GnngdielltErameter

The pressure gradient parameter that was used

throughout this study was Pohlhausen's shape factor based on

boundary layer thickness, A , or a modified form commonly

used which is based on momentum thickness, A . The normal

Pohlhausen parameter is defined as

A = 2 dir (2)
v dx

where Um = Um(x), and in the case of the wedge family, Um

is of the form, Um = Uoxm, with Uo being a constant and x is

the streamwise coordinate. x is defined similarly as

10
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. 622 dUm

V dx

For the flow cases which were considered here, the flow was

attached laminar flow, i.e. instability and transition

occured before flow separation from the boundary wall. In

the case of external flow, Bernoulli's equation for along a

streamline outside the boundary layer is given as
V

dP dUm (4)

dx dx

and this can be used with equation (1) to denote A and x as

pressure gradient parameters of the form:

is .62 ~P
A _ (-) (5)

-Um dx

X) dP) (6)

UUm 'dx'

This rendering of as a measure of the magnitude and

typeof pressure gradient (A positive denoting a streamwise

pressure drop, or favorable pressure gradient, etc.) was

C' very convenient for the flat plate cases studied due to the

common treatment (Ref. 1) of the boundary layer profile as a

polynomial in A . Here, the velocity profile was of the

. . ' , form:

..a*
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u(n) Um -(2n-2r3 +n4 ) + (.-32+3n3-n4) (7)
6

where n is a nondimensional coordinate to the flow commonly

denoted as n= y/S. With the variation of A , different

profiles of the nondimensional (corresponding to u(r)/Um)

in equation (1)) were obtained by Schlichting (Ref. 1), et.

al., that yielded different Rcrit values depending upon the

value of A (see Fig. 3). This functional relationship of

Rcrit, based on displacement thickness, was plotted versus A

in Fig. 4 (the plot as far as can be determined from Ref. 1

and Ref. 8 was merely a curve drawn through the indicated

stability trials). Schlichting further implied that this

0. relationship for Rcrit vs. A , based on various pressure

gradients imposed on flat plate flow, could be universally

applied to AU external boundary layer flows.

The assumption of a universal relationship between

Rcrit and A as given in Fig. 2 was tested by considering

the "wedge flow" cases, which are particular solutions of

similar solutions of boundary layer flow. These flows

experience a streamwise pressure gradient that is due to a

flow area change where the conventional parameter is

Hartree's B . Hartree's B is physically interpretted as the

ratio of the wedge angle over and is a function of the

exponent of the stream-wise coordinate for similar flows

4. .. denoted in the following form:

p 12
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Fig 3 Neutral Stabilty Cumr VoriFato Plate
wiPressure Gradientsor. (Ref. 1)
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The relationship between A and 0 (see Appendix B for a

full derivation) was found to be

A 2(ni) 2 s(m + 1) (9)
2

where n. is the value of the nondimensional coordinate at

the edge of the boundary layer (where u(n) is 99% of Urn).

With this relationship it was possible to compare on one

plot (see Fig. 5) both the flat plate cases and the wedge

flow results and to verify that what Schlichting implied but

did not prove appeared to be correct.

The two internal flow cases of two parallel infinite

flat plates (plane Poiseuille flow) and fully-developed pipe

flow (Hagen-Poiseuille flow) were also considered in this

study. There was a stability result available for the

parallel flat plate case (Ref. 6) but the pipe flow case was

found to be stable to infintesimal disturbances up to all

critical Reynolds numbers tried (Ref. 9) and no stability

result was thus available. However, a corresponding

approximate parameter was estimated for both cases due to

the availability of transition data for both cases. This

approximate method followed from the known exact solutions

of the Navier-Stokes equations (Ref 1:85-86) for Poiseuille

flow of

_h2  dP 2

2P dx

14



"UT 0

V.v

-Vv

Fig 5 Physical Definition of the Wedge angle.

' .:.'.

15



4

and for Hagen-Poiseuille flow in a pipe given by

-R2 dP 2

4u dx R

where y is a coordinate measured from the centerline, x is

the streamwise coordinate, h is half the distance between

.w the parallel plates, and R is the radius of the pipe. The

relationship between the pressure gradient and from

equation (5), with the substitution of U centerline for Um

and h and R respectively for 6, was adapted wholesale to

obtain "equivalent" values of A for the parallel plates and

the fully-developed pipe flow, which were respectively,

A= 2 and A= 4. The values of A obtained were those

necessary to be consistant with the parabolic velocity

distributions commonly given for these flow cases.

Tiknesse

For the external flow cases the different boundary-

layer thicknesses were defined in the usual manner. The

usual boundary-layer thickness,s , was the distance out from

the wall at which the local velocity had obtained 99% of the

N "free-stream" velocity value. The displacement thickness,

1, was given by

co U()

1 1 ( 1 -) dn (12)
0 U.

And, the momentum thickness, 62, was given by:

=%

16



2 p U( n) (1 U( n) d(3

o U .. U .

The flow thicknesses for the interior flow cases were

obtained by modifying the conventional definitions given

above. The boundary layer thickness, 6 , was assumed to be

half the flow passage dimension for both the fully-developed

internal flow cases. A detailed analysis of the

approximations for 61 and 62 of both internal flow cases is

given in Appendix C. The values for the parallel flat

plates were approximately 61 = h/3 and a2 = h/7.5 where h

was half the plate separation, and the values for the fully-

developed pipe flow were approximately 51 = (0.293)R and

62 = (0.1835)R, where R was the pipe radius.

The determination of the approximate value of the

displacement thickness for the parallel plates case along

with its "equivalent" Pohlhausen parameter allowed the

inclusion of another stability theory result (Ref. 6) on the

plot representing the variation of Rcrit with A(see Fig. 5).

As can be seen this plot, the internal flow result seem to

be consistent with the external flow cases for this work's

interpretation of A.

Since most transition data appeared to be reported in

terms of R82 and not Rsi, the stability results were

17



converted into critical Reynolds numbers based on s2 (see

Fig. 6). An analytic equation was then determined that fit

the stability results that was given by

A- 4.5
R62 ,crit = 2954 tanh ( + 2981 (14)

2.7

and was presented with the stability results in Fig. 7.
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Concurrently with the work done to produce an analytic

expression for the wave stability dependence on the ambient

pressure gradient, the stability of the vorticity of the

flow was also investigated. The laminar flows considered in

this work were assumed to be parallel. General turbulent

flow, however, is known to be greatly unparallel locally

where large vortices feeding "large eddies" break up the

main flow and in turn devolve into "small eddies" that are

responsible for turbulence on a local level (Ref. 10). As

long as the viscous stresses acting against the flow

counter-balance the flow's inclination to rotate and form

eddies, the main mechanism of turbulent flow motion, eddy

production, cannot be sustained and the flow remains

laminar. The objective of the work done in this section was

to determine a means of predicting when the flow would

"trip" over into eddy motion (rotating pockets of fluid) and

thus become turbulent.

The anlaysis of the effect of vorticity upon flow

transition was based upon a rough visualization of the flow

as a solid element moving along a resisting surface

(Fig. 8). As long as the moment due to the element's weight

counters the inertial moment, the element will tend only to

translate along the contact surface. If however the element

is elongated away from the contact surface, the weight

21
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moment will decrease and the inertial moment will increase

(Fig. 8b). If this deformation is continued until the

inertial moment is greater than the weight moment (Fig. 8c),

the element will tend to rotate as well as translate. When

this solid element is now considered as an incompressible

fluid element, the inertial moment corresponds to the

product of the shear stress (proportional to the vorticity)

in the fluid and its location away from the flow passage

wall. The flow (which is the summation of all of these

infinitesimal moving fluid elements) is considered to be

unstable when the first moment of the flow vorticity is

greater than the effect of the net balancing forces acting

on the fluid element (Ref. 11). While these balancing

(forces are not identified specifically, it is hypothesized

that they are dependent on fluid properties but independent

of local flow conditions; that is to say, once the first

moment of vorticity gets to be some magnitude, the flow

becomes unstable.

The vorticity of the parallel flows considered was

given by

av au
V x v = ( - -) (14)

ax ay

which, if v/ax is neglected, was simplified to

- au (15)

The first moment of vorticity was designated as I, where I
4p

* ... ' was defined by
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.4/

= - - r rydy (16)

0

The viability of this approach was tested by

considering the Pohlhausen boundary-layer profile and the

.2; parabolic velocity profile for fully-developed parallel

plate flow. In the first case, the velocity profile was

given by

*2y 2y 3  y4 A y 3y2  3y3  y4
u(y) = U + - )) (17)

a6 3 4 a 62 63 a.

The moment, I, was then given by

I U f (2y 6y 3  y4
V" a 63 +  +

0

A Y 6y2  9y3  4y4

with the result that

I : 3 1 (19)V, 10 120

Using the shape-factor ratio of 81 to a given by Pohlhausen

(Ref. 1) as (3/10 - A/120), this measure of stability was

then I Raj , or the Reynolds number basedon the

displacement thickness. The second case used a velocity

profile given by

24
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[ - -'.u (y) =U (2y y 2

(C- U (20)
h h

where half the displacement between the plates, h, was

equated to the boundary-layer thickness, a. The moment, I,

was then given by

U f 2y2 ) dy (21)I:- dy a

V o
0

and resulted in,

1 Us
(22)

V

When compared with the shape-factor previously determined

0for the parallel plates case of 1/3, I again was the value
of the Reynolds number based on the boundary-layer

displacement thickness, Raj . These results indicated that

the value of the Reynolds number based on displacement

thickness was the single parameter for flow stability.
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V- V' . .. -V. Re u

The validity of the two prediction methods was examined

by comparing the predicted results with those available from

experimental investigations in two different ways. The

prediction results were first compared to accumulated data

for a variety of different airfoils and flow cases and then

the prediction methods were used to analytically estimate

the location of the transition point for a NACA 0018 airfoil

that experienced two different body Reynolds numbers and

different angles of attack.

The pressure gradient method that was derived from

stability theory was converted into transition data in two
different ways. Initially the analytic curve that fit the

stability data,

A- 4.5
R62,crit = 2954 tanh (- + 2981 (23)

was converted to a transition basis by scaling the predicted

critical value of R62,crit 231 for the zero pressure

gradient case ( A= 0) to the transition value of

R62 ,trans = 1150. This transition value was obtained by

modifying the Kays and Crawford method (Ref. 1) where a

value for Rx,trans = 3,000,000 was used instead of their

. value, Rx,trans = 300,000 (this higher value is

26
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k. . . . . . ,

experimentally supported by Reference 12). The resulting

-e. analytic equation was then:

A - 4.5
R82,trans = 14786 tanh (-+ 14917 (24)

2.7

The second method took into account the known difference

between R82,crit and R62,trans shown in Figure 9 (Ref. 13).

An analytic curve fit for this difference was found to be

&R6 2 = 400 exp(601) + 400 (25)

where A was related to A (Ref 2:210) by

A : (37 1 A - 1 A2)2A (26)
315 945 9072

OThis difference was then added to the R62,crit expression of

equation (23) to obtain a transition Reynolds number of the

form:

A- 4.5
R82,trans = 2954 tanh ( - ) + 2981 + AR6 2  (27)

*2.7

The results of both of these methods are shown in Figure 10,

together with experimental results which were taken from

Reference 14. (It must be noted that the expression for ARS 2

was only valid for A values less than 0.025, or A values

less than 2.0, and subsequently care should be taken when

using that method of conversion.)

27

,%1



1800

II

16100 -

J1 .'*,.'x

1400
2000- ,

1600 V

1~00-

1400 V

" x200

-0,03 *-OOZ -001z 0-03
ADVERSE Al FAVOURABLE

Fig Empirical AR Variation with (Ref.

1 28



-~~~~~ ~~~~~~ . .* rr r u r. . .r . .- r --- w-rrw-' -.- 

4.,

SEXPERIMENTAL TRANSITION DATA
.SCALED PREDICTION CURVE

-,=EMPIRICALLY CORRECTED CURVE

4.'

+/

4...-"" .

+9'

+

-. 4.+

10 -0._0_ -0.0__-0_04_0._020._00._0

La6da (

Fig 10 Comparison-of St6lity-

"2" ,"; Derived Curves with Dat,=.

29

2" ',:.','.:;2;?,",* . 244'%. ...,.. , -,.. . . "-- . - -- -. . . - .,.. - , .,., ,- . . , . , . ,, , , - , L,-,, '," ,



Two values of R61,trans constant were chosen

to represent the vorticity-stability theory; a value or

R61 = 3000 that corresponded to low (0%) free-stream

turbulence levels and a value of R 1 1226 that

corresponded to high (1.2%) free-stream turbulence levels.

These values were chosen so as to be consistent with the

findings of Hall and Gibbings (Ref. 13). A shape-factor

consistent with Pohlhausen's polynomial fit (Ref. 1:210) was

used to relate R82 to R8 1 by the function

37 1 1 2

315 945 9075
R62  R6 1  (28)

3 1
10 120

The resulting variations of R82,trans with X are shown in

Figure 11 along with previous results and further data (from

Ref. 13). It was evident that a constant value of R6 1 fit

the data for X < 0 (adverse pressure gradients) quite well

but tended to underestimate the value for Rs2,trans for

> 0 (favorable pressure gradients). This lack of

correlation for vorticity stability to experimental data for

accelerated flow might be due to the limitations of a fourth

order polynomial fit for the velocity profile in this region

or might be due to other undetermined reasons. It is

interesting to note, however, that in the favorable pressure

-. ' gradient region the transition equations based on
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wave-stability fit the low-level free-stream turbulence

data. It is possible that wave mechanics effects over-

shadow the effects of vorticity-stability of the flow for

-..- these cases.

The two values of R6 1 = constant, 3000 and 1226, that

are presented in Fig. 11 are arbitrary bracketing cases for

the data. These values in turn represent flat plate

Reynolds numbers based on the location from the leading edge

of 363,000 and 3,130,000 respectively, which are within

reported experimental limits of experimental flat plate,

zero pressure gradient, transition (Ref. 12).

The two internal flow results considered in this work

concerned parallel flow between two infinite plates and

fully-developed flow in a pipe. The parallel plates result

-... was based on a thin rectangular duct study where the aspect

ratio was 8:1 (width/depth) and the transition Reynolds

number based on average velocity and hydraulic diameter was

experimentally found to be 2600 (Ref. 15). This Reynolds

number yielded R62,trans = 585. The pipe flow result was

based on the universally quoted value of the Reynolds

number, based on hydraulic diameter and average velocity, of

2000 for transition. This value yielded a value of

R82,trans = 366. both of these results are shown in Fig. 11

and signified by "o". It is interesting to note that the

low-level free-stream turbulence value of R61 = constant

3.
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(3000) yielded a Rd,trans 6853 , which is well within the

known experimental range of 2000 to 40,000 (Ref. 16).

feicion 2f Jran i.on Location

The prediction methods developed in this work were used

to estimate the location of transition on a NACA 0018

airfoil. Schlichting (Ref. 1:500) gave a presentation where

the experimental transition curves of two body Reynolds

numbers, those of 1,700,000 and 5,000,000, for the NACA

airfoil were compared with stability curves of a Joukowski

0015 airfoil that had a similar pressure distribution. The

work presented here used a computer program (which was

obtained from Captain J. Lawrence, Ref. 17) that calculated

boundary-layer parameters at incremental steps along a

Joukowski airfoil. At various angles of attack, estimates

were then made to locate the transition points on the

airfoil for the various angles of attack and resultant

coefficients of lift. Transition curves for both a Raj

value of 1355 and the scaled pressure gradient dependent

method, Equation (24), were used to produce the results

presented in Figures 12 and 13. It can be seen in both

cases that the predicted transition curves did a better job

at predicting transition than the stability curves alone.

The constant Raj curve gave a closer approximation to the

experimental curve for the R1 = 1.7 million case but did not

do as well as the pressure gradient dependent method for the

R -5.0 million case.
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V I. Q~ncqU~nz and Rec.enato

This work produced two different methods for predicting

the transition of laminar to turbulent flow. The first

approach resulted in a pressure gradient dependent technique

that matched the available experimental data well in the

region of adverse pressure gradients but underestimated the

data for favorable pressure gradients. The second method,

derived from viewing the stability of the flow's vorticity,

%;0 resulted in a criterion of a constant Reynolds number, based

on boundary-layer displacement thickness, that fit the data

well for favorable pressure gradients but underestimated the

data for adverse pressure gradient cases.
. Future work in this area could include a more rigorous

r4 ,examination of the modelling techniques, a high-order

~polynomial fit for the velocity profile, e.g., that might

improve the prediction results for both methods. In

:addition Hall and Gibbings (Ref. 13) noted that R1,trans

varl-d with free-stream turbulence levels. This variation
~could be investigated further or the effect of other

parameters, such as heat transfer, upon RS1 could be

examined.
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"-"APaix A
Orr-Sommerfeld Equation Derivation

The Orr-Sommerfeld equation is based on the three-

dimensional, nonsteady, encompressible Navier-Stokes equa-

tions, as follows:

au au au au aP
(- + u-- + v-- + w--) X - - + uv2u (Al)
at ax ay az ax

av av av av aP
o(- + u- + v- + W--) Y - - + u72 v  (A2)

at ax ay az ay

aw aw aw wW aP
P - + u- + v- + w-) = Z - - + pv 2 v (A3)

a t ax a y a z a y

au av aw
-- +- + - = 0 (A4)
ax ay az

Simpliflying assumptions are that body forces are negligible

and that there is only one-dimensional mean flow in the

x-direction. The total flow variables are sums of mean and

perturbation quantities of the form:

u 9(y) + u'

V =V,

w- W,

P = P+ P'
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.4  These variables are substituted back into the Navier-Stokes

equations with only the terms linear in u', v', or w'

retained. The equations are now of the form:

-" PIx

U't + UU'x + V'Uy + VV (A5)

v't +uv'x - i + v 2 v (A6)
P

PIz
w't + w' x = _ + vV2w' (A7)P

u x + V'y + W'Z = 0 (A8)

The disturbances are considered to be bounded as x and

z tend toward infinity. They are also considered spatially

periodic of the form

U' = u(y,t)exp[i(kx + lz)]
vt = v(yt)exp[i(kx + iz)]

w' = w(y,t)exp[i(kx + lz)]

P' = P(y,t)exp[i(kx + lz)]

The equations are now

P
Ot + U(ikj) + vUy ik - + v(-k 2 

- 12 + ayy) (A9)
P

Py
ut + U(ikv) + - - + v(-k 2 - 12 - Vyy) (AO)

ilPz
wt + u(ikw) + V - 12 - Wyy) (All)

*47-" iku + qy + ilw 0 (A12)
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'I Equation A9 is multiplied by k/(k 2 + 12)1/2 and equation All

is multiplied by l/(k 2 + 12)1/2 and the two are added

together to yield:

a
t(ku + lw) + u(ik)(ku + lw) - uykU =

att

ik + l)p + v:-k 2(k + 15)12 : (k + la)

+a 2  
-ku + 1-) (A13)

New variables are now defined as

U =:- 1 a2 k2 +1 2  P , t

(k2 + 12)1/2 k a

where the equations are now of the form:

tt + 6(iaui) + l -io + (_. 2  ) (A14)

v t  + U(iav) :-a- + -c (.2 + )W15)

~(i~) k + yy) 15

ioux + Vy 0 (A16)

Equations A14-A16 are now of the form of equations A9-A12 if

w and 1 are zero, which is the form of the two-dimensional

perturbation case. Since (a/k)v :((k2 + 1 2 )/k)v > v , then

Rcrit2d < R and two-dimensional perturbations are

less stable than three-dimensional ones. This result is

known as Squire's theorem. Further analysis can be

simplified conservatively, therefore, by considering only

two-dimensional perturbations.
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If equations A9, A10, and A12 are taken with w 0 and

the mean flow equations are assumed to satisfy the N.S.

equations, i.e.,

1 aP d2  a 1 aP- v and ~-0

P ax dy2  P ay

then the N.S. equations are then of the form:
.%

U't + uu'x + v'Uy + 1/p P'x v72 u' (A17)

-t UV'X + 1/v Py VV2v' (A18)

U'x + V'y 0 (A19)

A stream function,* , is now introduced

*(x,y,t) = 0(y)exp[i(ax - Bt)]

where

0 = complex amplitude
27r

-T (wave number)

,O r + iBi

O r = circular frequency of partial oscillation

Si = amplification factor

C B/a

Cr = velocity of wave propagation in x-direction

Ci = degree of amplification/damping

The perterbation velocities are now defined by

Ut S -

.:.. ay

0'(y)exp[i(ax - et))

40
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.4.

ax

= -ia(y)exp[i(ax - t)]

substituting back into A17, A18, and A19 yields

0(-is)exp[i(x - Bt)] + Ui'iaexp[i(ax - at)]

Px
A - il~exp~i(tx - at))u' + .- p

- V(-01' 2 exp[iex - at)] + 0'''exp[i(ax - at)]) (A20)

-a80exp~i(cax - Bt)J + iUCg20exp~i(cxx - at)] + -y

= V(iUc3 exp[i(*x - Bt)] - iacz'''exp[iax - at)] (A21)

0'(ia)exp[i(ax - at)] - (iac'exp[i(ax - at)] 0 (A22)

If equation A20 is differentiated with respect to y,

Equation A21 is differentiated with respect to x, the

pressure term is assumed to be indifferent to order of

differentiation, the resultant Equation A21 is subtracted

from the new Equation A20, and the resultant combined

equation is divided through by exp(i(ax - at)), then the

single combined equation is of the form:

;.is4" + idU'i" - ia" + ia2sa - ia3ff =.

4 v(0'''' - 20" 2 + a40) (A23)

S .And finally, if Equation A23 is divided through by ica (where

41



C =B),nondimensionalized by R lUm/v), and the terms

on the left-side of the equation rearranged, the common form

of the Orr-Sommerfeld equation is produced as:

(u - c)(0" - a2)- u"0

,ii

--- (off?? - 2a0+ ct0) (A24I)

4.4,

9
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"' ":'%; A. p_.nd.,tx B

Conversion of 8 Parameter To A Parameter

Pohlhausen's shapefactor is usually defined as:

62 dUm
a = (B1)V dx

where

5 = boundary-layer thickness

v = fluid kinematic viscosity

Um = Uoxm (Uo = constant)

x = streamwise coordinate

Hartree's beta parameter or wedge angle (see Fig. 5) is

defined as (Ref. 1):

L 9. dUm(*1 e =-.= g (B2)

dd

where

L = characteristic length

U = free-stream velocity

and

* g-( 2 x Ug C ( ) (U-) (B3)
mn+ 1 L Urn

If Equation (B3) is substituted into Equation (B2), the

resultant expression for Hartree's parameter is

2 x dUm
(- (B4)

-. m+1 Ur

43



" Equations (BI) and (B4) are then solved for dUm/dx to

yield:

dUm .. Urn. (m + ) A (B5)

dx 2 x 62

Rearranging yields,

A •B. (m + 1) (B6)

For a given boundary-layer flow, the boundary-layer

thickness is given in terms of the similarity variable, n,

in the form:

P= (B7)

where n is the value of the similarity variable at the edge

of the boundary layer. If U. is approximated by U and

Equation (B7) is substituted into Equation (B6), the final

expression relating A to o is given by

(11)2

A - B . (m + 1) (B8)

Various authors have tabulated values of n variation

with B . In this work n values from Reference 18 were used

to convert R81,crit results from References 19 and 7 from a

. dependence to a dependence on A. These results are given

in Table B.
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Table B

TI A R61 crit

a.

1.00 1.000 3.372 11.370 12400
1.00 1.000 3.372 11.370 121490
0.80 0.667 3.564 8.468 10920
0.60 0.429 3.769 6.088 8640
0.60 0.429 3.769 6.088 8890
0.50 0.332 3.899 5.067 7680
0.40 0.250 4.045 4.091 6230
0.30 0.176 4.206 3.122 4550
0.20 0.111 4.393 2.144 2955
0.20 0.111 4.393 2.144 2830
0.10 0.053 4.626 1.126 1658
0.10 0.053 4.626 1.126 1380
0.05 0.026 4.767 0.583 865
0.00 0.000 4.924 0.000 680
0.00 0.000 4.924 0.000 520

-0.05 -0.024 5.244 -0.671 354
-0.05 -0.024 5.244 -0.671 318
-0.10 -0.048 5.356 -1.366 126

- ~ -0.10 -0.048 5.356 -1.366 199
-0.14 -0.065 5.624 -2.069 138
0.199 -0.090 6771 -4.162 0
0.1 -0.090 6.771 -4.162 67

545

0.00.5 466 .2618
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"",:!Ap.&en ixi C

Boundary-Layer Thicknesses

For the two internal flow cases the boundary-layer

displacement thicknesses and the boundary-layer moment

thicknesses were approximated following a method given by

Dr. J. Hitchcock (Ref. 20).

A. Paalle E a t

The common definition for the boundary-layer

displacement thickness was given by:

u(y) )dy@ 1= / (1 - )y(C1)

0

Here, a flow area was equated to the integration of

( - u(y)/U) over a differential perimeter area in the

form:

(flow area) = f (I u d(perimeter area) (C2)
U

flow area

where from Figure Cla

(flow area) = 2. w -61 (C3)

d (perimeter area) = 2wdy + 2hdz (C4)

For two infinite parallel plates (Fig. Clb) the differential

perimeter area became 2wdy. Using a parabolic distribution

for the velocity,
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Fig Clb Infinite Parallel Plates.

. ' '.',Fig CI Parallel Plate Geometry.
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** *. u y) 2y y""; "' [----U = (_Z _) 2 ( )2

U F Fh (C5)

The expression for the displacement thickness was then

61 f(1- hy + 2) dy (6)

0

or,

,1 = h/3 (C7)

2. MMmltum 3:11"naa

The momentum thickness is commonly given as:

s2 u(y) (1 u(y) )dy
62 - (--)dy

U U

The approximation used here was

J .u(y) u~y)
( f l o w a r e a ) =- I -( I U)

flow area

d (perimeter area) (C8)

or,

h
f u(y) u(y)

2w Q-f - (--- (2wdy) (C9)
0

Again, using a parabolic velocity distribution yielded:

h
- .2 f (2y y 2  2y + y2 dy (C10)

0 h h2  h h2

_48



or,

"- 62 = h/7.5 (C)11

B. ZLJRSke

1. Displacement Ihickness

The approximation used here for the boundary-layer

thickness for the pipe was

R

(flow area) f (1 - -) d(perimeter area) (C12)
U

0

where (see Fig. 2C)

flow area = 2wR61  
2

perimeter = 2wrdr
area

0With a parabolic velocity distribution of,
U(r) 1 r 2 "

-r1 r- 2  (C13)

U 2

a displacement thickness expression was found to be

R

2 R 1 - 612 = 2R (1 - (1 - -)) rdr (C14)

0

or,

2R 1 - 612 R/2 (C15)

This expression resulted in a value of 1 of approximately

(0.293)R.
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i . i 2. Momentum Tl

The boundary-layer momentum thickness was approximated

using:

2 Rt

(2wR82 - ir 2)  f -- (1I ) (2,rdr) (C16)
11 U

0

Substituting in Equation (C13) yielded

R r 2  r 2

(2R62 - 622) 0 ( - -) (-) 4rdr (C17)

0

or,

2R82 -
22 = -

which when solved for 62 yielded a value of 62 (0.1835)R.

5

% . -5



Test Trials

The following computer program, written in its present

form by J. Lawrence (Ref. 17), was used to test the

prediction methods developed in this work. Table D shows

the results of the runs made. The original function of this

program was to investigate the effect of a pitching angle of

attack on the flow parameters, Cl, Cd, etc. Here a was set

at zero.

TABLE D

RL(X10 6 ) TRIAL

CK Const R f(A)CL x/1) (Xll)

1.7 0 0.190 0.130
1.7 0.5 0.195 0.140
1.7 0.4 0.209 0.154
1.7 0.2 0.229 0.170
1..7 0.0 0.245 0.200
1.7 -0.2 0.270 0.217

5.0 0.4 0.100 0.124
5.0 0.2 0.100 0.135
5.0 0.0 0.124 0.174
5.0 -0.2 0.132 0.184

%- .44
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:. PROGRAM POHL3
COMPLEX CM1PLXtEL, Z,'Z-E.TApW
OPEN (15YFILE= 'FLOWIN')
REWIND 15
OPEN (16,FILE='docolit')
El=(0.,1.)N RADIUS-1.131
AMU=-131
READ (15Y*,END=iOO) ALPHA,AE'OT1,UINF
ALPH 1-ALPHA
CON=3*1415927/1BO.

* THETA=180#
TIME=O.O
CALL DS(180.,RAEIIUSCON,AMUXLEYLE)
CALL DS(O.ORADIUSrCON,AMUXTEYTE)
XLE=ABS(XLE)
CHORD=XLE+XTE
PITCH=ADOTl*CON* * 5*CHORD/UINF

K= 100
K1=K+l
K2=(ALPHA+150)*lOO+K

WRITE(16,30)UINF
WRITE( 16,40)ALPHA
WRITE( 16,50)ADOT1
WRITE(16,52)

4., ANGLE=ALPHA+THETA
CALL U(ANGLERADTUSCON,EI,UINFAMUALPHAUO)
CALL DS(ANGLE,RADIUS,CON,AMUrXOYO)
ANGLE=ANGLE-0#*01
CALL U(ANGLERADIUSCON,EIUINFAMUALPHAUl)
CALL DS(ANGLE,RADIIJSCON,AMUX1,Yl)

4., ANGLE=ANGLE-O *01
CALL UCANGLEPRADIUSCON,EI,UINF,AMU,ALPHA,U2)
CALL DS(ANGLE,RADIUS,CON,AMU,X2,Y2)
DS2=(SORT( (X2-XI )**2+(Y2-Y1 )**2) )/CHORD
DS1=(SQRT((Xl-XO)**2+(Yl-YO)**2))/CHORDI * Stagnation point velocity gradient computed using a

* forward difference method' all other velocity gradients
* computed using central difference method#

DUDSC(U2-UO)/(DS1+DS2)

* Second derivative of velocity computed using a
* Taylor's Series expansion*

D2UDS2-(U2-2.*Ul+UO'/( (tS+DS2) /2.)**2
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* Enter initi~ bound'ary la~yer pariameters,

RLAMDA=7. 052
RK=0*0770
FK=0.0

* DZDS=-0#,0652*D2UIDS2/ (DUDS**2)
* ZZ=RK/DUDS

N=50
ANGLE=ALPHA +THETA-0.01
XOC=(XO+XLE)/CHORD
F2K=0#C
WRITE(16,I)XOC,UOF2KRLAMDA,FKRKZZ,DZDS

ADOT=O *

DO 1.0 J=1,K

* Function of this loop is to compute boundary la~yer
* parameters a~t stagnation point, allowing the
* boundary layer to steady-out before subjecting it
* to a pitching airflow.

* N=N+l

* Compute pertinent boundary layer parometers.

ZZ=E'ZDS*DS1+ZZ
RK-ZZ*DUDS
FK=,47-6.*RK
DZDS=FK/Ul

DELT=CHORD*DS1/Ul
TIME=TIME+DELT
CALL U(ANGLERADiIUSCONEI ,UINFAMU,ALPHAU2)
DUDT=(U2-U1 )/DELT
ANGLE=ANGLE-09*01
ANGLE 1=ANGLE-0#*01
CALL U(ANGLElIADtIUS,CON,E1,UINFAMUALFPHAU2)
CALL r'S(ANGLE1rRArIUSCONAMU,X2,Y2)
ANGLEO=ANGLE+0 .01
CALL U(ANGLEO,RAPIUSCON,EIUINF,AMU,ALPHAUO)
CALL DS(ANGLEO,RADI*US,CON,AMUXOY0)
CALL U(ANGLERAtIIUS,CON,EI,UINFAMUALPHA,Ul)
CALL DS(ANGLE,RADIUSCONrAMUX1,lYl)
DS1=(SORT((XI-XO)**2+(Yl-YO)**2))/CHORD
DS2=(SQRT((X2-Xl)**2+(Y2-Yl)**2))/CHOR'

DSS-DS1 +DS2
- DUDS=(U2-UO)/DSS

Ur'UrDS-u1* DUDS
XOC=( X1+XLE) /CHORI
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TP(N.LT.5')) C(0 TO 10

*6 WRITE(16,I)XOC,U1 ,FI.RLAMrAFKR1K,zz,EizDs

ADOT-ADOT 1
N=O
DO 20 J=K1,K2

* Function of this loop is to compute the behavior
* of the boundary layer as i-t is subjected to Q
S pitching airfoilo

N-N+1

* Compute the pertinent boundary layer parameters.

ZZ-DZDS*DSI+ZZ
RK=ZZ* (DUrtS+DUDT/Ul)
CALL POHL(CRK ,RLAMDA)
DEL2=37./315.-RLAMDA/945.-(RLAMIA**2)/9072.,
FK=2,*DEL2*(2.-.3683*RLAME'A+.0104*RLAMDA**2+

+ (RLAMDA**3)/4536)
F2K-C .3-RLAMEIA/120. )/DEL2
DZDS-(FK+(4.+F2K)*ZZ*DUDT/U1 )/U1

A * Compute the time increment for a particle to
* travel from point C.i) to paint (i+l).,

DELT-CHORD*DS1/Ul
TIME-T IME+DELT
DALPHA=DELT*ADOT
ANOLE=ANGLF.+DALPHA
ALF'H1-ALPH1 +DALPHA
CALL U(ANGLERADIUSCONEI ,UINFAMUAL'H1,U2)

* Compute the unsteady velocity gradient.

DUDT-(U2-U1 )/DELT
ANOLE=ANGLE-0.01

w ANGLEI -ANGLE-0 .01
CALL U(ANGLE1,RADIUS,CON,EI,UINF,AMU,ALPHlU2)
CALL DS(ANGLE1 ,RADIUS,CON,AIU,X2,Y2)
ANGLEOuANGLE+O.01
CALL UCANGLEORADIUSrCONEIUINFAMU,ALPH1,U0)
CALL DS(ANGLEOyRAEIIUSCONAMUXO,YO)
CALL U(ANGLERArI~usvCONEI,UINFAMuALPH1,Ul)
CALL DS(ANGLE,RADIUS,CONAMUX1,Y1)

$ Compute arc length and velocity gradient.
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41

* DS2~XO=(XlCXLEC(-Hf..+(2YIK2l/H

Stop the computation at the quartei--chord#

IFCXOC*GE*0.500) GO TO 25
'rF(N.LT,250) GO TO 20

WRITEC16,1)XOCUlF2KRLAMDAFKRKZZDZDS
20 CONTINUE

25 WRITE(16,1)XOCUlF2KRLAME'ApFKRKPZZDZDS
WRITE(16,45)ALPH1
WRITE(16955)PITCH

* WRITE(16,dO)RK
WRITE( 16,80)

I WRITE(16,81I)TIME
1 FORMAT(4XF6.3,2(4XFlO.3),4X,F7.3p4XF7.4,4XFB.4,2(4XE9.3))

30 FORMAT( iHi, BOUNDARY-LAYER PARAMETERS FOR ',F6,2v'FT/SEC8/)
40 FORMAT(O INITIAL ANGLE OF ATTACK:# ',F6,3,' DEGREES*/)
45 FORMATC/ FINAL ANGLE OF ATTACK:# IF6.3r' DEGREESI/)
50 FORMAT(* PITCH RATE:* fF7.3,* rEGREES/SEC*/)
52 FORMAT(6X,'XOC',lOX,Uvl1Xp'F2Kv9X,'LAMBDA,8SX,'FK',

+ 9X,'F4K',11lXvZ',1lX,'t'DS6/)
55 FORMAT(* PITCH PARAMETER:* ',F7.5/)
60 FORMAT(* K AT THE QUARTER-CHORD:o ,vF84/)
s0 FORMAT(O TIME TO REACH THE QUARTER-')
SOL FORMAT(9 CHORD FROM THE STAGNATION POINT:* OF7*5r, SEC'/)

STOP
100 END

-~ SUBROUTINE U(ANGLERADIUSCONEIUINFAMUALPHAPUU)
- ** COMPLEX CMPLXZEIDZETAW

Function of this subroutine is to to compute the local
valuie of velocity on a Joukowski Airfoil using complex
potential flow theory#

4 X-RADlUS*COS(ANGLE*CON)
Y=RADIUS*SIN CANGLE*CON)
Z=CMPLX(XY)
W-UINF*C(1. ,O. )-(RADIUS**2)/Z**2+

+ (2.*EI*RADIUS*SIN(ALPHA*CON))/Z)
X=X+AIU
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S.Z c h an .ed to~ r e r ,e :. or rf'C mte u 'i ed i n
* the transformation equation.

Z=CMPLX(XPY)
DZETA= (Z**2- (RAD[IUS+AMU )**2) /Z**2
UU=CABS(W)/CABS(DZETA)

* RETURN4

S * SUBROUTINE DS(ANGLEvRAEIIUSCONAIUXY)

COMPLEX CMPLXZ

* Function of this subroutine is to compute the arc
* length between two points on the Joukowski Airfoil*

X=RADIIJS*COS (ANGLE*CON) +AMU
Y=RADIUS*SIN (ANGLE*CON)
Z-CMPLX(XY)"
Z=Z+( CRAIIUS+AMU)**2)/Z
X-REAL(Z)
Y-AIMAG(Z)
RETURNO END

SUBROUTINE POHL(RKRLAMDA)

* Function of this subrou.tine is to compute the value
* of the separation parameter, Lamda, given a value
* of K, as computed in the main program.

RK2=-.112
RK3=0#00
RK4=0#06
RK5-0#076
RK6O * 086
RK7-090949
IF(RK.LE.RKI) GO TO 10
IF(RK.LE.RK2) GO TO 20
IF(RK.LE*RK3) GO TO 30
IF(RKLF~.RK4) GO TO 40
IFCRK.LE*RK5) GO TO 50
IF(Rr..LE.RK6) GO TO 60
IF(RK*GT*RK7) GO TO 70

RLAMDA=#*0149**2- (RK-0.*08) **2
RLAMDA=12-100#*SQRT (RLAMttA)
RETURN
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* l.-.71 - --

~ ~10 RL tIA= 2./.Ol il,a ri4
~ RETURN

20 RLAMr'A=(4*/#044)*RK+2#18
RETURN

*30 RLAMDA=(10*/.14)*RK

RETURN

40 RLAMDA=83*33*RK
* RETURN

5 0 RLAMDA=-1.9+115.*RK
RETURN

60 RLAME'A=-6.54+176#*RK
RETURN

70 RL.AMDA=12.
RETURN
END

Oak*

558



1. Schlichting, H.H. B2undar Lazr T1cra (Seventh
Edition). New York: McGraw-Hill book Company,
1979.

2. Kays, W. W. and Crawford, M. E. Q~ny.qJtje Heat jjnd
Baia Iransfer. New York: McGraw-Hill Book

3. Hunt, J. N. InqomPreible Fjjd D2namigi. New

York: John wiley & Sons, Inc., 1964.

4. Lin, C. C. "On the Stability of Two-dimensional
Parallel Flows Parts I, II, & III", Quareixj
2urn~al 2f A2lied Mathemaliaz, Volume 3,

Numbers 3 & 4: 1945 & January, 1946.

5. Verma, G. R. Hankey, W. L., and Scherr, S. J.
"Stability Analysis of the Lower Branch Solutions
for the Falkner-Skan Equations", AEERL TR-79-3116:
July, 1979.

6. Orzag,S. A."An Accurate Solution of the Orr-
Sommerfeld Stability Equation", EidL Msbni",
Volume 50, Part 4: 1971.

7. van Ingen, J.L. "Theoretical and Experimental
Investigations of Incompressible Boundary Layers
With and Without Suction"; Technological
University Delft, Report VRH-124: October, 1965.

8. Schlichting, H. H., and Ulrich, A. "Zur Berechnung
des Umschlages Laminar-Turbulent": LJ.Dj.
Luffahrt-FQr__u, Volume I: 1940.

9. Davey, P. and Nguyen, H.P.F. "Finite-Amplitude
Stability of Pipe Flow", Journal 2f ELulA
&,qanics, Volume 45, Part 4: 1971.

10. Hodge, J. Class Notes for AE 8.27, "Turbulent Flow",

School of Engineering, Air Force Institute of
Technology, 1983.

11. Jumper, E.J. Private Communication. Air Force
Institute of Technology, 1983.

59



J1 .N -IM _N Z% ; . _K V:_' .. 7~~ 1. ..- -. % -. -

B%*,*r .22Yj .9''.

12. Jaffe, N.A., Okamura, T.T., andSmith, A.M.O. "Deter-
mination of Spatial Amplification Factors and
Their Application to Predicting Transition", AZ"
Jora, Volume 8, Number 2: February, 1970.

13. Hall, D.J. and Gibbings, J.C., "Influence of Stream
Turbulence and Pressure Gradient Upon Boundary
Layer Transition", Journal 2f ennlcal
Eniner.ing Science. Volume 14: April, 1972.

14. Granville, P.S. "The Prediction of Transition from
Laminar to Turbulent Flow in Boundary Layers on
Bodies of Revolution", Naval Ship Research and
Development Center, Bethesda, Maryland, Report
3900: September, 1974 (AD-787060).

15. Kao, T.W. and Park, C. "Experimental Investigations
of the Stability of Channel Flows. Part 1. Flow
of a Single Liquid in a Rectangular Channel,

iJournal 2f Fluid M1&.gbnics, Volume 43,
Part 1: 1970.

16. Crowder, H.J. and Dalton, C. "On the Stability of
Poiseuille Flow in a Pipe", JoUrnal 2 f
omiu onal PhYe, Volume 7: 1971.

17. Lawrence, J. Private Communication. Air Force
Institute of Technology, 1983.

18. Walz, A. Bondr Laer 2f fl !l an~d T&ea ue.
Cambridge: MIT Press, 1969.

19. Obremski, H.J., Morkovin, M.V., and Landahl, M. "A
Portfolio of Stability Characteristics of
Incompressible Boundary Layers", AGARDgraph 134:
March, 1969.

20. Hitchcock, J. Private Communication, Air Force"

Institute of Technology, 1983.

/60

/
.4 /

..... .... 6 0



Richard D. Charles was born on 7 May, 1960, in Newark,
iDelaware. He graduated from Newark Senior High School in
! 1978 and entered Lehigh University in the same year. He

~graduated with a Bachelor of Science Degree in Mechanical

Engineering and was commissioned into the United States Air

Force Reserve in June, 1982. He then immediately entered

the School of Engineering, Air Force Institute of

Technology.

Permanent Address: 365 S. College Ave.
Newark, Del. 19711

61

-'4.

-0 . . ' ' - t - ' ' ' " L ' ' ' ' ' ' . ' ' ' ' ' *



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE A) Z )/& ,L;

I ~~TS~Y CASSIICAION REPORT DOCUMENTATION PAGE
REPOT SEURIY CLSSIICATONlb. RESTRICTIVE MARKINGS

2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAILABILITY OF REPORT
______________________________ Approved for public release;

a.L DECLASSIFICATION/DOWNGRADING SCHEDULE dsrbto niie

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA/83D-4
V .NAME OF PERFORMING ORGANIZATION 1b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

ftappikable)
School of Engineering IAFIT/EN

6.. ADDRESS (City. State Fin ZIP Code) 7b. ADDRESS (City, Stot and ZIP Coda)

Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433
So I. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMB3ER

ORGANIZATION (it applicable)

ft. ADDRESS (City, Stot ad ZIP Code) 10. SOURCE OF FUNDING NOS. ______

PROGRAM PROJECT TASK rWORK UNI,
E LEME NT NO. NO. NO. NO.

11 1. TITLE (Include Seurty Classification)
See Box 19 __________1

'PERSONAL AUTHOR(S)

Richard D. Charles, B.S.M.E. 2d Lt, USAF
' a1. TYPE OF REPORT 13b, TIME COVERED 114. DATE OF REPORT (yr., Mo.. Day) 15. PAGE COUNT

*MS Thesis FROM _ TO _ 1983 Dec-ember 73
16. SUPPLEMENTARY NOTATION .

17. COSATI CODES 1. SUBJECT TERMS (CfUI ~~~&Aakd btontify by block number)

FIEL GROP -e.G Boundary Layer Transition, Flow Stability,
20 04Laminar Flow, Turbulent Flow, Reynolds Number

S 19. ASTRACT (Contnue on reverse it necessary and identify by block number)

Title: Predicting the Onset of Turbulence in the Presence of a

Pressure Gradient

Thesis Chairman: Eric J. Jumper, Major, USAF

.*. OISTRIU"1UTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLAS3IFICATION

~~ICLASSIPIEOD/UN LIMITSED 0 SAME AS APT. El DTIC USERS 0 UNCLASSIFIED
22,NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

(Include A me Code)
1 Eric J. Jumper, Major, USAF 1 513-255-3517 AFIT/ENY
DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. U_!NCLASSIFIED

SECURITYi CLASSIFICATION OF THIS PAGE



-. - --. s--- -. a . . . . . . . . . . - - -

UNCLASSIFIED
SECURIlY CLASSIFICATION OF THIS PAGE

An analytical study is presented regarding the

determination of a pressure gradient dependent criterion

for flow transition from laminar to turbulent flow. The

results obtained were derived from two parallel approaches

to flow stability; one of wave-dependent stability and

the other of vorticity stability. In both cases, one of

a variable transition Reynolds number dependent upon the

ambient pressure gradient and the other one of a constant

transition Reynolds number based on boundary-layer dis-

placement thickness, the prediction results were either

as good or better than those from available prediction

methods. In addition these two criteria were used to

predict transition locations on a NACA 0018 airfoil,

again with favorable results.

.,5

C

"E UNYLASSIFI O O
• ' ____ •SECURITY CLASSIFICATION OF THIS PAGE



4

f2 i. I-f-" 4- T

II

'7 7. *a 
d


